TiHo Hannover Logo
    • The TiHo
      • About TiHo
      • Mission Statement
      • Foundation
      • Presidium
      • Prizes and Honors
      • TiHo Alumni Network
      • Funding opportunities
      • Society of Friends of the TiHo
    • Career
      • Personnel Development
    • Administration
      • IT-Service
      • Event Management & Room Rental
    • News & Publications
      • News
      • Events
    • International Academic Office
      • International Academic Office
    • Employee Representatives
      • Staff Council
    • Equal Opportunities Office
      • Equal Opportunities Office Home
      • Equal Opportunity
      • Family
      • Diversity
      • about us
    • Library
      • Library
      • Borrowing and Ordering
      • Search and Find
      • Learning and Working
      • Writing and Publishing
    • General information for students
      • Contact
      • Lecture times and re-registration
      • Lecture catalogue
      • TiHo online portals for studying and teaching
      • International Academic Office
      • Quality assurance in study and teaching
    • For prospective students
      • Veterinary medicine
      • Studying biology
      • Studying food technology
    • For students
      • Veterinary medicine
      • Food Process and Product Engineering
    • PhD & Graduate School
      • Graduate School HGNI
      • PhD Programme "Animal and Zoonotic Infections"
      • PhD Programme "Systems Neuroscience"
      • PhD Programme "Veterinary Research and Animal Biology"
    • Centre for Teaching
      • Information about the centre for teaching
      • E-Learning Service
    • Research profile
      • Main research topics
      • Virtual Centers
      • Research collaborations and network
      • International Ranking
    • Research projects
      • TiHo research
      • Overview of research projects
      • Search Publications
    • Scientific qualification
      • German doctoral degrees
      • Doctoral Scholarship
      • Graduate School - HGNI
      • VIPER - DFG Research Training Group
      • Habilitation
    • Good research practice
      • Code for scientific working
      • Open Access
      • Research Data Management
    • Clinics
      • Clinic for Poultry
      • Department of Small Mammal, Reptile and Avian Medicine and Surgery
      • Clinic for Small Animals
      • Clinical Centre for Farm Animals
      • Unit for Reproductive Medicine
    • Institutes
      • Institute for Anatomy
      • Institute of Biochemistry
      • Institute of Biometry, Epidemiology and Information Processing
      • Institute for Immunology
      • Institute of Food Quality and Food Safety
      • Institute of Microbiology
      • Institute for Parasitology
      • Department of Pathology
      • Department of Pharmacology, Toxicology and Pharmacy
      • Institute of Physiology and Cell Biology
      • Institute of Terrestrial and Aquatic Wildlife Research (ITAW)
      • Institute for Animal Nutrition
      • Institute of Animal Genomics
      • Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN)
      • Institute of Animal Ecology
      • Institute of Virology
      • Institute of Zoology
    • Special units and Research Centers
      • Institute of General Radiology and Medical Physics
      • Research Center for Emerging Infections and Zoonoses
    • Field stations
      • Field Station for Epidemiology (Bakum)
      • Institute of Terrestrial and Aquatic Wildlife Research
      • WING - Science for innovative and sustainable poultry farming
  • DE
  • EN
Emergency
HomepageClinics & InstitutesInstitutesInstitute of Animal EcologyResearch

Research

  • Teaching
    • Erasmus+ DigitalMarine
    • Lectures
  • Research
  • Publications
Reset
23 results.
Biodiversity of the World Nature Reserve Wadden Sea: A quarter of a century cross-sectioning
Langzeiterfassung der Biodiversität des Wattenmeeres: Querschnitt durch ein Vierteljahrhundert
Project Investigators: Prof. Dr. Bernd Schierwater; PD Dr. Heike Hadrys
Duration: Beginning 2004 until End 2029
Project Details:
Forschung und Zielsetzung

Die deutsche Nordseeküste als Teil des "UNESCO Weltnaturerbe Wattenmeer" ist ein weltweit einmaliger mariner Lebensraum mit einer bisher weitgehend unbekannten Biodiversität. Aufgrund seiner besonderen Eigenschaften (z.B. hinsichtlich Gezeiten und klimatischen Bedingungen) stellt dieser Lebensraum eine besondere Herausforderung für eine Vielzahl von Organismen dar und die besonderen und diversen ökologischen Nischen im Bereich der deutschen Nordseeküste versprechen das Vorkommen von endemischen Arten und vielen bisher noch unbeschriebenen Organismengruppen. Dieser einmalige Lebensraum ist jedoch permanent durch anthropogene Einflüsse bedroht, und speziell die Auswirkungen der globalen Erderwärmung und der zunehmenden Versauerung der Meere stellen eine existenzielle Bedrohung für viele marine Organismen dar.
Dies ist weltweit das erste Mal, dass ein bedeutender Lebensraum über 25 Jahre in Folge kontinuierlich, umfassend und vergleichend quantitativ in seiner Biodiversitätsdynamik beschrieben wird und zwar in Bezug auf ein Vierteljahrhundert globaler Veränderungen.
Wir schaffen Daten statt Spekulationen.

Arbeitsmethoden
Field work, Envrironmental Genomics, Metagenomics, Bioinformatics
Cooperation Partners:

Dr Helen Spence-Jones (she/her)

Postdoctoral Researcher

Coastal Ecology/Ökologie der Küsten

Alfred-Wegener-Institut

Helmholtz Centre for Polar and Marine Research

Wadden Sea Station

25992 List auf Sylt, Deutschland


Dr. Michael Tessler

AMNH New York

Show Details
Cosmic Radiation response in the simplest animal on Earth: Trichoplax, a new evolutionary animal model for Space Biology Research
Cosmic Radiation response in the simplest animal on Earth: Trichoplax, a new evolutionary animal model for Space Biology Research
Project Investigators: Bernd Schierwater
Duration: 2025 until 2026
Funding: Australian Nuclear Science and Technology Organisation (ANSTO), 60.000 EUR
Project Details:
The high-energy cosmic radiation has a decisive influence on all manned space missions. The effect of this radiation on the model organism Trichoplax adhaerens (Placozoa) will be investigated in this project. Placozoans are the most simply organized multicellular animals and can give us crucial clues about the effect of cosmic radiation on humans.
Cooperation Partners:

Patrick Humbert, La Trobe University, Australia

Jens Hauslage, DLR, Köln

Show Details
The soil fauna of the nature reserve Riddagshausen (Braunschweig): Comparison of three biotope types: Are there first indications of an effect of increasing soil drought?
Die Bodenfauna des Naturschutzgebiets Riddagshausen (Braunschweig): Vergleich dreier Biotoptypen: Gibt es erste Anzeichen für einen Effekt bei zunehmender Bodentrockenheit?
Project Investigators: Bernd Schierwater; Jörg-Alfred Salamon
Duration: 2021 until December 2025
Project Details:
In this 5-year monitoring-study the density, diversity and community structure of Collembola and Mesostigmata of three different biotope types (oak-hornbeam-mixed forest, drainage ditch (edge), wet meadow) are investigated in the nature reserve Riddagshausen, a Flora-Fauna-Habitat (FFH) area characterized by a small scale mosaic of different habitat types like ponds, meadows, farmland and mixed forests. In each of the biotope types 10 sampling points spaced at least 20 m apart from each other were selected at random. Large spacing was done to avoid spatial autocorrelation, samples therefore were assumed to be independent.
Starting in March 2021 ten soil cores (diameter 5 cm) were taken at each of the biotope types (one soil core per sampling point). The cores were subdivided into two horizons (litter layer, 5 cm mineral soil). The soil cores were used to extract Collembola, Gamasida and soil macrofauna using a modified high gradient canister method (Macfadyen, 1961; Schauermann, 1982). Collembola and Mesostigmata were determined to species level.
Moreover, Collembola species were aggregated into three different functional groups according to their vertical distribution (epedaphic, hemiedaphic, and euedaphic). These groups differ in their dispersal ability and other attributes such reproduction, mobility, metabolic activity and feeding behaviour.
This sampling and identification pattern will be repeated every year (2021-2025) in early spring (March/April).
We expect changes in the soil fauna communities of the investigated biotope types due to strong differences in the amount of precipitation between the years.
Cooperation Partners:

1) Prof. Stefan Scheu, J.F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen

2) Dr. Bernhard Klarner

Show Details
GRAVIPLAX: Investigating the effect of gravity on cell polarity mediation in the simplest multicellular animal, Trichoplax adhaerens
GRAVIPLAX: Untersuchung des Einflusses der Gravitation auf die Vermittlung von Zellpolarität im einfachsten vielzelligen Tier, Trichoplax adhaerens
Project Investigators: Prof. Dr. Bernd Schierwater
Duration: Mid 2019 until End 2025
Project Details:
Die Vermittlung und die Erhaltung der Zellpolarität sind wichtig zur ordnungsgemäßen Funktion der Zelle und ihrem umgebenden Gewebe. Ein wichtiger Signalgeber hierbei ist die Gravitation. Kommt es zum Verlust der Polarität, beispielsweise durch Defekte in polaritätsvermittelnden Genen, kommt es in der Regel zu Tumoren. Aufgrund ihres komplexen anatomischen und genetischen Aufbaus sind die dafür relevanten genregulatorischen Zusammenhänge bislang nicht hinreichend charakterisiert.
In diesem Projekt werden Veränderungen in der Genaktivität in dem einfach aufgebauten Meerestier, Trichoplax adhaerens, unter simulierter Schwerelosigkeit untersucht.
Das Projekt wird in Kooperation mit dem Gravitationsbiologen Dr. Jens Hauslage vom Deutschen Luft- und Raumfahrtzentrum (DLR) in Köln und Patrick Humbert, Professor für Krebsbiologie von der La Trobe University in Melbourne durchgeführt.
Cooperation Partners:

Deutsches Luft- und Raumfahrtzentrum (DLR);

La Trobe University in Melbourne

Show Details
The genetic basics of polarity in animal cells: biomedical studies on the simplest multicellular animal in zero gravity
Die genetischen Grundlagen der Polarität tierischer Zellen: Biomedizinische Studien am einfachsten Vielzelligen Tier in der Schwerelosigkeit
Project Investigators: Bernd Schierwater
Duration: 2023 until February 2024
Funding: Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK), 30.000 EUR
Project Details:
The first step in the albuminous degeneration of cells leading to cancer, is the loss of polarity of a cell. Without polar orientation, cells start to grow into any direction and start forming a tumor. Scientists all over the world are trying to identify the genes that are responsible for this process. Up to now without success, as the genetics behind is unknown and hardly decipherable in complex human cells.
We want to use the simplest animal model organism, the placozoan Trichoplax in order to identify the responsible genes. Those placozoans do not have any organs or symmetry; they only have a clear polarity of top and bottom. The signaler for polarity is gravity. We can switch it off naturally in space (sounding rockets) or simulately in the lab (via clinostat experiments) in order to study the effects on gene expression patterns. With placozoans as a subject of examination and gene studies in zero gravity we are now able to break new grounds with regards to interdisciplinary and experimental cancer research.
We have formed an international project entity of cancer scientists, space researchers, geneticists and evolutionary biologists in order to be able to launch this new research approach.
Cooperation Partners:

1) Deutsches Luft- und Raumfahrtzentrum (DLR) Köln

2) LaTrobe University, Medical School, Melbourne, Australia

3) Yale University, Yale Genomics Center, New Haven, USA

4) Prof. Robert DeSalle; Sackler Institute for Comparative Genomics, AMNH, New York)

Show Details
CAOS Barcoding in viral or bacterial diseases
CAOS Barcoding bei viralen oder bakteriellen Krankheiten
Project Investigators: PD Dr. Heike Hadrys
Duration: End 2017 until Mid 2023
Funding: Alexander-von-Humboldt-Stiftung, 70.000 EUR
Project Details:
Medical research on diseases mediated by microbial organisms has been severely hindered by reliable strain identification. The main reason simply is: More than 90% of all microorganisms have not been identified yet and traditional identification methods have routinely been grouping genetically diverse strains into the same category. Can one understand the differences in action between arsenic enriched water and normal tap water (which look the same) if you think they are the same? The answer is no, it would be better to have a reliable unambiguous identification system for all clear liquids, no matter how small the difference. Such a system has been developed in a multi-million research network run by scientists at the AMNH, New York. This system is known as CAOS barcoding and has been successfully tested for example on insect species delimitation, insect vectors, mammals, symbiontic bacteria, rumen microflora, virus strains and others. The barcodes can be identified centrally in our lab at TiHo Hannover (and in collaboration with the AMNH, NY). The barcodes are given to the authors and the community in a web-based, easy to use data platform.
Cooperation Partners:

Prof. Robert DeSalle; Sackler Institute for Comparative Genomics, AMNH, New York)

Show Details
Graviplax2127: Exploring the synergy of basic biology, microgravity physics and modern cancer genetics to unravel the mechanisms behind epithelial growth control
Graviplax2127: Entschlüsselung der Kontrollmechanismen epithelialen Wachstums durch Synergien aus traditioneller Biologie, moderner Mikrogravitationsphysik und angewandter Krebsgenetik
Project Investigators: Prof. Dr. Bernd Schierwater
Duration: June 2021 until Novemer 2021
Funding: Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK), 50.000 EUR
Project Details:
One of the key evolutionary events of life on earth is the emergence of organisms that use multiple cell types for the division of labour. How this occurred and how multicellular organisms (metazoans) establish and maintain an organized architecture is yet poorly understood. As a consequence, malfunctions of epithelial tissue organization and architecture, like cancer growth, are even more poorly understood. Modern technical innovations and the synergy of multiple scientific fields, including evolutionary biology, space research and cancer genetics have recently opened completely new opportunities to address the genetic control of tissue organisation in metazoans and to better understand regulatory malfunctions, including the origin of cancer cells in humans.
The key biological tool to generate normal epithelial architecture is through the control of asymmetry at the cell and organism level. This is coordinated by a highly conserved set of proteins known as cell polarity regulators. Importantly, the cell polarity complexes Scribble, Par and Crumbs complexes are considered to be a metazoan innovation with apicobasal polarity and adherens junctions believed to be present in all animals. As disorganisation of tissue architecture is a hallmark of epithelial cancer and its repair is critical for organ regeneration, a better understanding of the fundamental mechanisms regulating tissue architecture should provide key insights into human health.
We have been developing the simplest of all metazoan animals, the placozoan Trichoplax adhaerens,into a powerful model system to study the genetics behind cell polarity regulation in vivo and in full depth. In Trichoplax the genetics underlying cell polarity regulation is substantially less clouded than in humans, e.g. the number of to be tested regulatory gene interactions is more than 800 times smaller (although all principal gene families for building epithelial tissue polarity are already present in Trichoplax). Preliminary experiments have shown that we are able to experimentally disrupt polarity orientation in growing Trichoplax by removing gravity as the physical stimulus in a micro-gravity chamber. We have thus brought together an international team of experts for (i) the model system Trichoplax adehaerens, (ii) cell polarity genetics, (iii) microgravity space science, and (iv) cancer research. Our initial experiments indicate that as a team we will be able to experimentally introduce cell polarity loss in space flights, identify the genetic control of the off-set of cell polarity, experimentally test candidate regulatory gene interactions for polarity offset, rebuild protein effectors and test these in human cancer cell lines. Clearly the synergy of biological, physical and medical science approaches is more than the sum of the components. Here it can not only lead to a better understanding of the organisation of tissue architecture but it can also prepare the grounds for sensitive assays of cell malfunctions leading to cancer. As a long-shot even the development of vaccines against cancer in humans seems in range.
Cooperation Partners:

1) Deutsches Luft- und Raumfahrtzentrum (DLR);

2) LaTrobe University, Medical School, Melbourne, Australia

3) Yale University, Yale Genomics Center, New Haven, USA

4) Centre for Genomic Regulation, Barcelona, Spain

5) Université de Lyon, Centre de recherche en cancérologie, France

Show Details
Erasmus+: Hybrid educational and research training on the use of marine models in life sciences
Erasmus+: Hybrid educational and research training on the use of marine models in life sciences
Project Investigators: Prof. Dr. Bernd Schierwater
Duration: End 2018 until End 2021
Project Details:
The base of the project is the identification of a specific need in high-quality research training in marine sciences including the study of a broad variety of marine organisms at the European level. In spite of being evolutionary distant from Humans, marine species can bring fundamental knowledge that can be transferable to understand molecular and cellular processes governing several aspects of human biology. In addition, marine organisms constitute an important source of biomolecules with putative industrial and therapeutic applications making the development of marine resource a key area in the field of blue economy and blue growth. Considering the above-described contect, the present strategic partnership will develop a thourough research training focused on the use of marine organisms in several life science disciplines such as neurobiology, cell morphogenesis/cell biology, tissue regeneration, evolution/life cycle and marine biotechnology.
Cooperation Partners:

Prof. Dr Agnes Boutet (Sorbonne, Frankreich),

Prof. Dr. Stefano Piraino, Neapel

Show Details
Cancer research of the next generation: manipulating cell polarity in space and on Earth
Krebsforschung der nächsten Generation: Manipulation der Zellpolarität im Weltraum und auf der Erde
Project Investigators: Prof. Bernd Schierwater
Duration: February 2020 until July 2020
Funding: Niedersächsisches Ministerium für Wissenschaft und Kultur, 40.000 EUR
Project Details:
Eine Gemeinsamkeit aller Krebszellen ist ihr erster Schritt der Entartung, d. h. der Verlust der Zellpolarität, welcher sich in veränderten ("anormalen") Genexpressionsmustern manifestiert. Ein detailliertes Verständnis dieser genetischen Grundlagen ist notwendig, um entartete Zellen frühzeitig detektieren und ggf. wieder ins rechte Lot rücken zu können. In menschlichen Zelllinien sind die genetischen Interaktionen mit anderen regulatorischen Prozessen auf Zellebene zu kompliziert, um die notwendigen Details der "Entartung" (Polaritätsverlust) in akzeptabler Zeit entschlüsseln zu können. Das einfachste aller tierischen Modellsysteme jedoch, das Plattentier Trichoplax, hat vergleichsweise nur wenige Zellen und Zelltypen und eine übersichtliche genetische Komplexität mit sehr geringem Hintergrundrauschen. Kürzlich haben wir bewiesen, dass der polare Trichoplax faszinierenderweise Homologe aller relevanten und prinzipiellen Zellpolaritätsgene des Menschen besitzt, und somit völlig neue Möglichkeiten für eine Entschlüsselung der genetischen Regulationsmechanismen der Zellpolarität schafft.
im Mai 2021 startet die erste Forschungsrakete ("sounding rocket") vom DLR mit unserem Plattentier Trichoplax an Bord ins Weltall, wo dem Tierchen die Schwerkraft und somit das Signal für die Polaritätsorientierung seiner Zellen genommen wird.
Cooperation Partners:

1) Université de Lyon, Centre de recherche en cancérologie, France

2) Charles University, First Faculty of Medicine, Czech Republic

3) Vilua Health GmbH Braunschweig (Industriepartner)

4) Deutsches Luft- und Raumfahrtzentrum (DLR) Köln

5) LaTrobe University, Medical School, Melbourne, Australia

6) Yale University, Yale Genomics Center, New Haven, USA

Show Details
Evolutionary ecology of basal marine invertebrates
Evolutionsökologie basaler mariner Invertebraten
Project Investigators: Prof. Dr. Bernd Schierwater
Duration: 2014 until 2018
Project Details:
Unser langjähriges Forschungsinteresse im Bereich "kasuale Biodiversitätsforschung" gilt der Untersuchung der frühen Evolution der Biodiversität in diploblastischen Tieren (Placozoen, Schwämme und Hohltiere). Wir studieren auf verschiedenen Ebenen die Entstehung von Formenreichtümern mit dem Fernziel, die reale Artendiversität und ihre systematische Einbettung zuverlässig zu erfassen, schützenswerte Einheiten zu definieren, und das ökologische Wechselspiel zwischen Diversitätsdynamiken und Umweltfaktoren zu modellieren. Hierbei bedienen wir uns der experimentellen Feldforschung ebenso wie der Entwicklung und Anwendung neuer molekulargenetischer Arbeitstechniken. Auch die mathematische Entwicklung eines neuen DNA-Barcoding-Algorithmus sowie die Genomsequenzierung (aktuell für das Placozoon Trichoplax adhaerens; www.jgi.doe.gov/sequencing/why/CSP2005/trichoplax.html) gehören zu unseren Arbeitstechniken, um den Anforderungen der Zukunft zu genügen.
Cooperation Partners:

Dr. Peter Holland, Department of Zoology, Univ. of Oxford.

Dr. Rob DeSalle, American Museum of Natural History, New York City.

Dr. Stephen Dellaporta, Dept. Molecular Cellular & Developmental Biology, Yale University.

Dr. Vicki Pearce, Inst. of Marine Sciences, Univ. of California

Dr. Ferdinando Boero, University of Lecce Italy

Show Details
  • 1
  • 2
  • 3
  • »

TiHo-Services

  • University
  • Studies & Education
  • Research
  • Clinics & Institutes

Information

  • Emergency service
  • How to get here

Contact

Stiftung Tierärztliche Hochschule Hannover
Bünteweg 2
30559 Hannover

Tel.: +49 511 953-60
Fax: +49 511 953-8050
info@tiho-hannover.de
www.tiho-hannover.de

Contact to the clinics & institutes

Facebook-Logoyoutube-Logo
  • Legal Information
  • Data Privacy
  • Whistleblower-System
  • Contact
© 2025 Stiftung Tierärztliche Hochschule Hannover