Wolfgang Löscher is Professor and Director of the Department of Pharmacology, Toxicology and Pharmacy at the University of Veterinary Medicine Hannover, as well as Head of the Center for Systems Neuroscience in Hannover, Germany. He was born in Berlin, Germany, and graduated from the Free University of Berlin with a degree in Veterinary Medicine. He pursued postgraduate training and specialization in Pharmacology, particularly Neuropharmacology, and Toxicology in Germany, Denmark, and the United States and holds board certifications in these specialties. He has held posts in academic institutions and pharmaceutical industry and was appointed to the Department of Pharmacology in Hannover in 1987. His research interests are in the pharmacology of the brain, including the pharmacology of antiepileptic drugs, the mechanisms of pharmacoresistance in epilepsy, and the pathophysiology of temporal lobe epilepsy with the aim to find new targets for treatment. His many cooperations with pharmaceutical industry have fostered the development of new antiepileptic drugs such as levetiracetam and imepitoin. He has been a founding editor of the journal Epilepsy Research and serves on the editorial board of several scientific journals. He has over 400 refereed publications and is listed in the ISI web-list of the world’s most cited authors. He has obtained several awards for this research, including the Epilepsy Research Award for Outstanding Contributions to the Pharmacology of Antiepileptic Drugs of the International League against Epilepsy (ILAE) in 2001, the American Epilepsy Society’s Epilepsy Research Award for Basic Science Research in 2006, the Ambassador for Epilepsy Award of the ILAE and IBE in 2011, and the European Epileptology Award of the ILAE/CEA in 2014.

Major recent publication
Gernert, M., M. Hamann, M. Bennay, W. Löscher, and A. Richter
Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia.

Löscher, W.:
Current status and future directions in the pharmacotherapy of epilepsy.

Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon.
Neuron 37:787-800, 2003. ([IF 15.98](#))

Rogawski, M. A. and W. Löscher:
The neurobiology of antiepileptic drugs.

Rogawski, M. A. and W. Löscher:
The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions.

Volk, H. A. and W. Löscher:
Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures.
Brain, 128, 1358-1368, 2005. ([IF 10.23](#))

Löscher, W. and H. Potschka:
Drug resistance in brain diseases and the role of drug efflux transporters.

Löscher, W., M. Gernert, and U. Heinemann:
Cell and gene therapies in epilepsy--promising avenues or blind alleys?
Trends Neurosci., 31, 62-73, 2008. ([IF 12.9](#))
Brandt, C., M. Nozadze, N. Heuchert, M. Rattka, and W. Löscher:
Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy.

Löscher, W. and C. Brandt:
Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research.

A novel positron emission tomography imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood-brain barrier.

Töllner, K., S. Wolf, W. Löscher, and M. Gernert:
The anticonvulsant response to valproate in kindled rats is correlated with its effect on neuronal firing in the substantia nigra pars reticulata: a new mechanism of pharmacoresistance.

Löscher, W. and D. Schmidt:
Perampanel-new promise for refractory epilepsy?

Löscher, W., H. Klitgaard, R. E. Twyman, and D. Schmidt:
New avenues for antiepileptic drug discovery and development.
Nature Rev.Drug Discov., 12, 737-776, 2013. (IF 37.2)

A novel prodrug-based strategy to increase effects of bumetanide in epilepsy.