

Klinische Pharmakologie

Die Herausforderung einer sicheren Arzneimittelanwendung

Daniela A. Fux

Ass.Prof. PD Dr.med.vet.

Arzneimittelanwendung

Ziel

 durch Einsatz von
 pharmakologischen Wirkstoffen Krankheiten zu heilen und/oder klinische Symptome zu mindern oder lindern

Pharmakologische Grundsätze

Effektive Arzneimittelwirkung

Voraussetzung: Wirkstoff am Wirkort

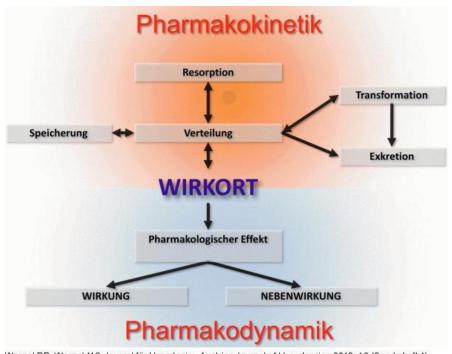
ausreichende Konzentration

ausreichend lange

aktive Form

Wirkungsweise von Arzneistoffen bestimmt durch:

Pharmakokinetik (Organismus -> Wirkstoff)


Absorption/Resorption

Verteilung

Metabolisierung

Elimination

Pharmakodynamik (Wirkstoff -> Organismus)
 Rezeptoren, Ionenkanäle, Enzyme

Werzel RR, Werzel MQ Journal für Hypertonie - Austrian Journal of Hypertension 2012; 16 (Sonderheft 1): 16-21 ©

Klinische Pharmakologie

- = angewandte Pharmakologie
- = sichere Anwendung von Arzneimitteln
- gesicherte Wirkung
- sichere Anwendung (Verträglichkeit)
- Rechtssicherheit (z.B. AMG/Umwidmung, Antibiotika-Leitlinien)

Anwendung von Arzneimitteln, die für Tierart und Indikation zugelassen sind

Klinische Pharmakologie

Zulassung: Anwendungsempfehlung von Arzneimitteln

aber: individuell auf Patienten angepasst?

vetmeduni vienna

Einflussfaktoren

physiologisch

- Alter, Spezies, Gattung, Arten, Rasse
- Verhalten

pathologisch

- Herz-, Leber-, Niereninsuffizienz

- → Konsequenzen für Arzneimittelwirkung/Sicherheit
- → Konsequenzen für Anwendung



Jungtiere

verminderte Darmperistaltik, Leber- und Nierentätigkeit

- → verminderte Resorption oral appl. Wirkstoffe
- → verminderte Metabolisierung
- → verminderte renale Elimination/Sekretion
- → größeres Verteilungsvolumen von hydrophilen Wirkstoffen

Altes Tier

- → Darmzottenatrophie (verminderte orale Bioverfügbarkeit)
- → Nieren, Leber: verzögerte Metabolisierung, renale Elimination
- → höheres Verteilungsvolumen von lipophilen Wirkstoffen

Beispiel:

reduzierte Wirkung von Prodrugs

- ACE-Hemmer (Enalapril, Ramipril)
- Prednison
- Febantel

Physiologische Einflüsse - Spezies

Hund:

- z.B. eingeschränkte Acetylierung
- → verlängerte Wirkung von z.B. Clonazepam
- → Sulfonamid-Unverträglichkeit

Katze

- z.B. eingeschränkte Glucuronidierung
- → verlängerte Wirkung von z.B. Meloxicam
- → erhöht Toxizität z.B. Permethrin, Acetylsalicylsäure

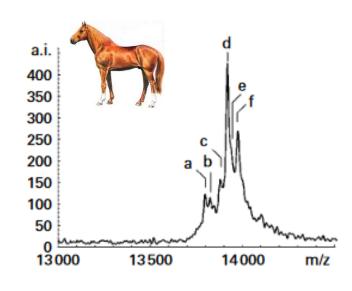
Schwein: eingeschränkte Sulfatierung

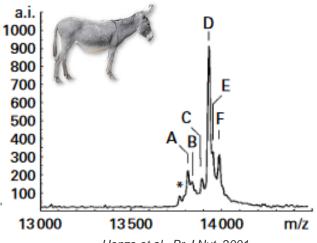
Physiologische Einflüsse - Gattung

Equiden

z.B. unterschiedliche Zusammensetzung der Plasmaproteine

→ Plasma-Clearance von Stoffen mit hoher PPB


z.B. Phenylbutazon ($t_{1/2}$ Esel: 1-2h, Pferd 4-6 h)


z.B. Amoxicillin, Ampicillin, Oxytetrazyklin

Ausnahme: Aminoglykoside

→ Initialdosis

z.B. Propofol (Pfd: 4-8 mg/kg; Esel 2 mg/kg)

Henze et al., Br J Nut, 2001

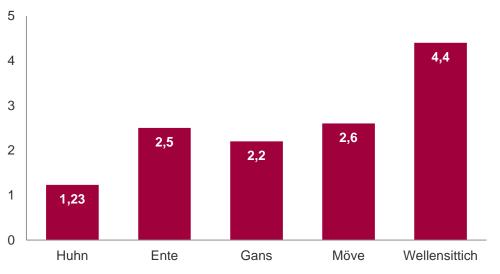
Physiologische Einflüsse - Gattung

Großer vs. kleiner Wiederkäuer

z.B. unterschiedliche Transcortin-Konzentration

Rind: niedrig

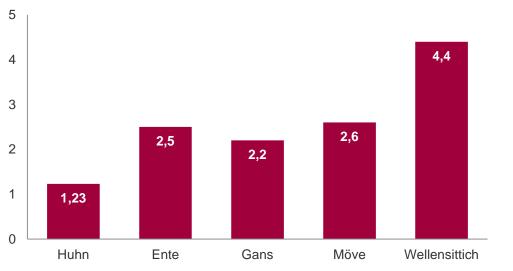
Schaf: hoch

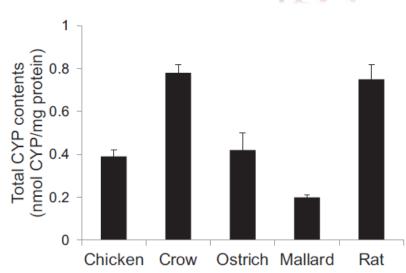

- → Bindung von Steroidhormonen inkl. Prednisolon
- → unterschiedliche Verteilungsvolumina

Vogelarten

z.B. unterschiedliche GFR

GFR (ml/kg/min)

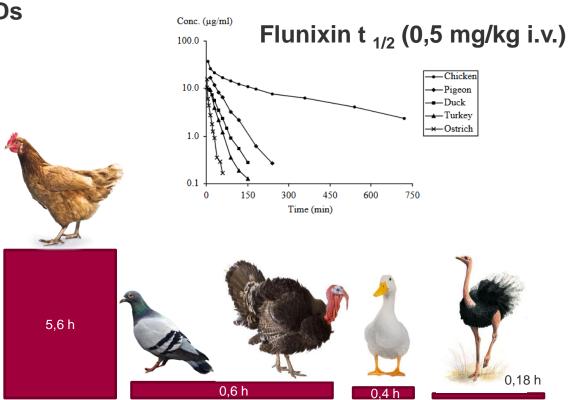




Vogelarten

z.B. unterschiedliche GFR, CYP Enzym-Expression

GFR (ml/kg/min)

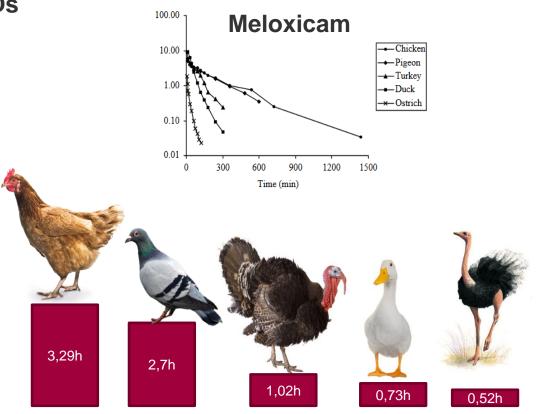


Vogelarten

z.B. unterschiedliche renale Clearance, CYP Enzym-Expression

→ Bioverfügbarkeit von NSAIDs

Flunixin: Huhn >> Strauß


Vogelarten

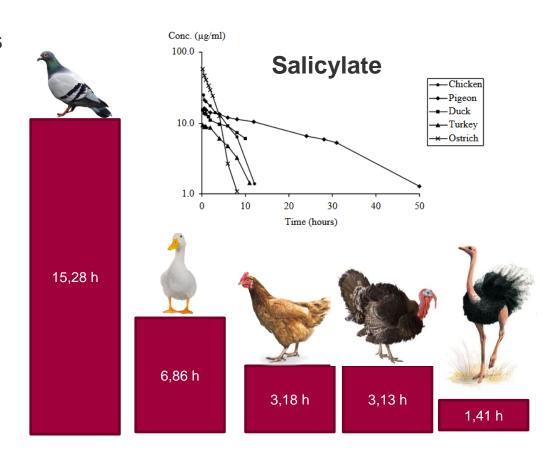
z.B. unterschiedliche renale Clearance, CYP Enzym-Expression

→ Bioverfügbarkeit von NSAIDs

Flunixin: Huhn >> Strauß

Meloxicam: Huhn >> Strauß

Vogelarten


z.B. unterschiedliche renale Clearance, CYP Enzym-Expression

→ Bioverfügbarkeit von NSAIDs

Flunixin: Huhn >> Strauß

Meloxicam: Huhn >> Strauß

Salicylate: Taube >> Strauß

Eliminationshalbwertzeit Aminoglykoside:

$$t_{1/2} = t_{1/2}$$

Dosis = Dosis

Eliminationshalbwertzeit Doxycyclin:

$$t_{1/2} = 20h$$

$$t_{1/2} = 10h$$

Große vs. kleine Hunderasse:

- GFR indirekt proportional zu kg
- ebenso metabolische Aktivität
- → große Hunde geringere Dosierung

Windhund: - geringes VV für lipophile Stoffe supratherapeutische Plasmakonzentration (z.B. Propofol)

- geringere Propofol-Hydroxylierung (CYP2B11)

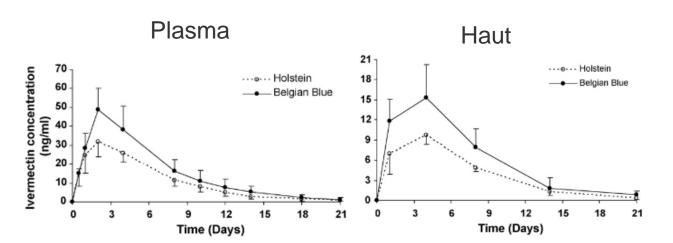
Collies: MDR-1 Gene/P-Glykoprotein Transporter

Avermectine, Loperamid: neurotox., Anwendungsverbot

Butorphanol, Azepromazin: Dosisreduktion

Fleisch-/Milchrassen:

 Unterschied in Fettgehalt geringes VV für lipophile Stoffe



Fleisch-/Milchrassen:

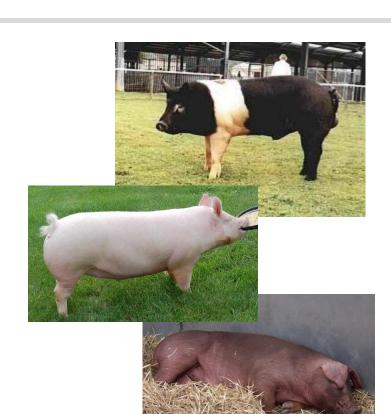
- Unterschied in FettgehaltVV für lipophile Stoffe
- Beispiel: Ivermectin (0.2 mg/kg s.c.) in Holstein Friesian und Belgian Blue

Schweinerassen:

Kreuzung beeinflusst CYP Expression
Howard et al., PLOSone, 2015

Beispiel:

SULT1A1: Hampshire x Landrasse


Hampshire x Duroc

CYP2E1: Yorkshire x Duroc

CYP3A29: Hampshire x Yorkshire

CYP3A22: Hampshire x Landrasse

Schweinerassen:

unterschiedliche Arzneimittel-bedingte CYP Induktion

Howard et al., PLOSone, 2015

Beispiel: Flunixin-Meglumin

Landrasse, Yorkshire: ABCB1

Yorkshire: CYP2E1

Duroc, Yorkshire: CYP1A2

Beispiel: Fenbendazol

Duroc, Yorkshire, Hampshire, Landrasse

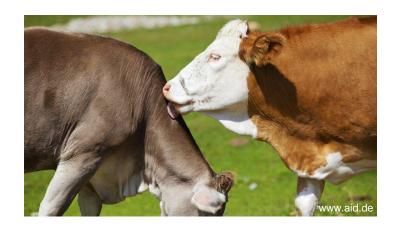
SULT1A1 L

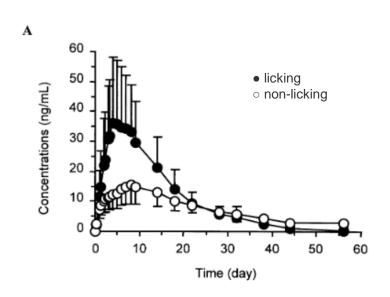
→ klinische Relevanz/pharmakokinetische Konsequenz derzeit noch unklar

Soziales Verhalten, "Putzverhalten"

systemische Bioverfügbarkeit von topisch-applizierten Wirkstoffen variabel

http://www.einfachtierisch.de/katzen/katzen-gesundheit/wenn-katzen-sich-staendig-putzen-moegliche-ursachen-id83241/

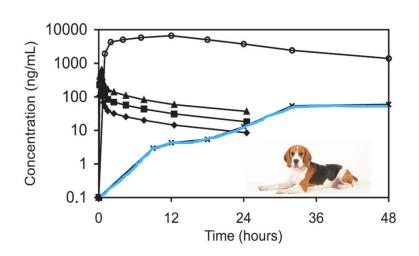


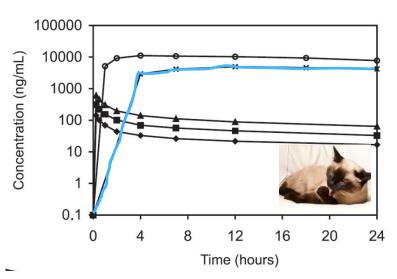

Soziales Verhalten, "Putzverhalten"

systemische Bioverfügbarkeit von topisch-applizierten Wirkstoffen variabel

Beispiel:

Ivermectin Pour-on (500 µg/kg; Kälber)


Soziales Verhalten, "Putzverhalten"


systemische Bioverfügbarkeit von topisch-applizierten Wirkstoffen variabel

Beispiel:

Ivermectin Pour-on (500 µg/kg; Kälber)

Selamectin Pour-on (24 mg/kg, topisch; Hund, Katze)

Sarasola et al., 2002, JVetPharmTher

Soziales Verhalten, "Putzverhalten"

systemische Bioverfügbarkeit von topisch-applizierten Wirkstoffen variabel

Beispiel:

Ivermectin Pour-on (500 μg/kg; Kälber) Selamectin Pour-on (24 mg/kg, topisch; Hund, Katze)

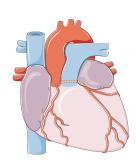
⇒ Gefahr der Resistenzentwicklung



Krankheitsbedingte Einflüsse

Nieren-, Leberinsuffizienz

Metabolisierung, Elimination, Plasmaproteinbindung, Verteilung


→ z.B. Stoffe mit hoher Plasmaproteinbindung (z.B. NSAIDs) – supratherapeutische Dosis

Herzinsuffizienz

Kreislaufzentralisierung Herz, Gehirn Nieren-, Leberinsuffizienz durch Minderdurchblutung

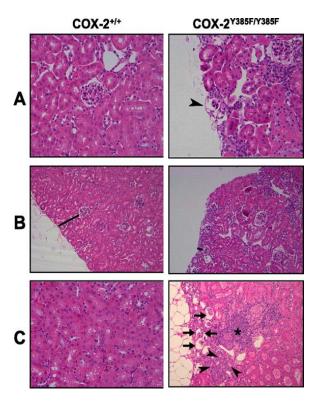
- → verminderte Elimination, Metabolisierung
- → verstärkte Kardio-, Neurotoxizität

Einfluss physiologischer und pathologischer Faktoren auf Verträglichkeit und Wirksamkeit

Verträglichkeit

Praziquantel

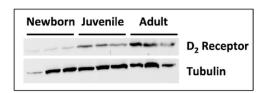
- rasche Resorption (oral)
- aktive Sekretion ins Darmlumen
- First-Pass-Metabolismus zu unwirksamen Metaboliten
- lipophil, passiert Blut-Hirn-Schranke (i.v.)

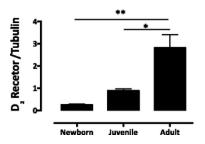


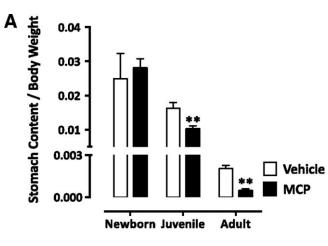
Verträglichkeit

COX-Inhibitoren (z.B. Meloxicam, Carprofen)

- Antiphlogistika mit hoher Plasmaproteinbindung
- Nebenwirkungen: Niere Durchblutung, Magen Mukusproduktion

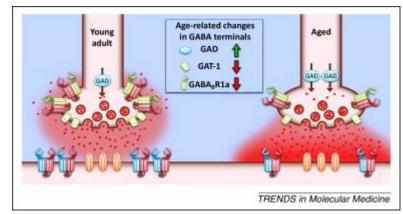



Verträglichkeit und Wirksamkeit


Dopamin/Dopaminantagonisten

Unterschiede in Dopamin-Rezeptorexpression und -empfindlichkeit (v.a. bis 3. Monat [Hund])

- → Ansprechbarkeit auf Dopamin nicht vorhersehbar
- → verminderte Metoclopramid-Wirkung
- verstärkte Nebenwirkung (α1) von Acepromazin
 (Hypotension, Bradykardie)



Verträglichkeit und Wirksamkeit

GABAerge Neuroneninhibition

Unterschiede in GABA Transportern und Syntheseenzym

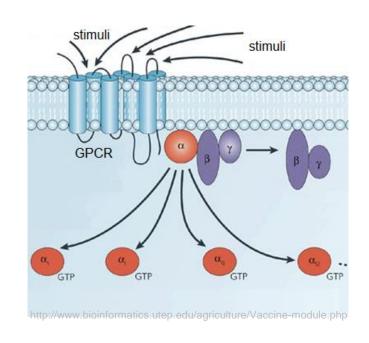
McQuail et al. Trends Mol Med, 2015

Gealtertes Tier:

Transporter reduziert; GABA Synthese erhöht

- → GABA Menge im synap. Spalt erhöht
- → erhöhte Empfindlichkeit auf Benzodiazepine

Wirksamkeit



Signalgebung von α2-Adrenozeptoren

α2-Rezeptoren: G_i und G_s Proteine

Unterschiede in der G-Protein Kopplung nach Agonisten-Bindung

→ unterschiedliche Wirkung/Wirksamkeit

Schwein:

→ Fehlen der sedativen Xylazin-Wirkung (therap. Dosis)

Rind:

→ erhöhte Empfindlichkeit

Wirkstoffkombinationen

Anwendungssicherheit

Wirkstoffkombinationen

- Pimobendan ("Ca-Sensitizer") + NSAIDs jeweils Stoffe mit hoher Plasmaproteinbindung
- Verdrängung aus Plasmaproteinbindung
- → Zunahme der Serumkonzentration
- Marbofloxacin + Antiphlogistika (i.m.)
 verminderte MBF Plasmakonzentration (Cmax; AUC)
- → verminderte MBF Freisetzung (Muskelvaskularisation?)

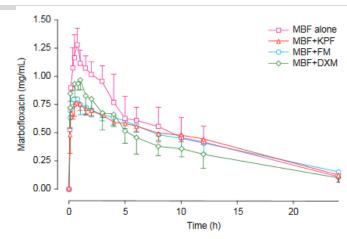


FIG 1: Arithmetic plots of serum marbofloxacin (MBF) concentration versus time after administration of MBF alone, MBF plus ketoprofen (KPF), MBF plus flunixin meglumine (FM), and MBF plus dexamethasone (DXM). Each point is the mean (sd) for buffaloes of seven to 15 days old

Baroni et al., Vet Rec (2011) 169, 182-183

- Acetylcystein (ACC; Mukolytikum) + Tetracyclinen, Cephalosporine
- → chemische Inaktivierung der Antibiotika

Rechtssicherheit

Rechtliche Regelung

Arzneimittel-Anwendung geregelt durch:

A: Tierarzneimittelkontrollgesetz (insb. §4)

D: Arzneimittelgesetz (§56a)

A: Hormon-VO

D: VO über Stoffe mit pharmakologischer Wirkung

Antibiotika Leitlinien

Rechtliche Regelung

Arzneimittel-Anwendung geregelt durch:

A: Tierarzneimittelkontrollgesetz (insb. §4)

D: Arzneimittelgesetz (§56a)

Therapienotstand: Umwidmung (Kaskadenregelung)

A: Hormon-VO

D: VO über Stoffe mit pharmakologischer Wirkung

Antibiotika Leitlinien

Rechtssicherheit

Besondere Herausforderung bei Umwidmung:

Wirkstoffdynamik, -kinetik des Patienten?

Verträglichkeit vom Wirkstoff?

Verträglichkeit von Azm.-Zusatz-, Hilfsstoffen?

(Hund - Polyvinylpyrrolidon [Povidon]; Katze: Phenol)

Dosisberechnung?

Applikationsart?

Rechtliche Regelung

Arzneimittel-Anwendung geregelt durch:

A: Tierarzneimittelkontrollgesetz (insb. §4)

D: Arzneimittelgesetz (§56a)

Therapienotstand: Umwidmung

(Kaskadenregelung)

A: Hormon-VO

Anwendungsverbote/Einschränkungen

D: VO über Stoffe mit pharmakologischer Wirkung

Antibiotika Leitlinien

Antibiotika-Leitlinien

"Reserve-Antibiotika" dürfen nur nach strenger Indikationsstellung zur Therapie von Einzeltieren und erkrankten Tiergruppen angewendet werden.

- Cephalosporine der 3. und 4. Generation
- Fluorchinolone (z.B. Enrofloxacin)

Einsatz nur, wenn nachweislich (detaillierte Dokumentation!) mit anderen Antibiotika ein entsprechender Behandlungserfolg nicht erzielt werden kann

ergänzt durch "Critical important Antibiotics for Human Medicine"

- Makrolide
- Glykopeptide

Mastitis mit *Strep. uberis*= Umweltkeim, Milchgänge
gering krankmachend

Ausnahme: schlechte Immunabwehr

Mastitis mit Strep. uberis

= Umweltkeim, Milchgänge gering krankmachend

Ausnahme: schlechte Immunabwehr

Antibiogramm:

Sensibel gg.

- Penicillin G
- Amoxicillin/Clavulansäure
- Ampicillin
- Cefiquinom
- Licomycin/Neomycin

Mastitis mit *Strep. uberis*= Umweltkeim, Milchgänge
gering krankmachend
Ausnahme: schlechte Immunabwehr

Antibiogramm:

Sensibel gg.

- Penicillin G
- Amoxicillin/Clavulansäure
- Ampicillin
- Cefiquinom
- Licomycin/Neomycin

Lokale Antibiose

Mastitis mit Strep. uberis

= Umweltkeim, Milchgänge gering krankmachend

Ausnahme: schlechte Immunabwehr

Antibiogramm:

Sensibel gg.

- Penicillin G
- Amoxicillin/Clavulansäure
- Ampicillin
- Cefiquinom
- Licomycin/Neomycin bac-statisch

Lokale Antibiose

Bakterizides AB!

Mastitis mit Strep. uberis

= Umweltkeim, Milchgänge gering krankmachend

Ausnahme: schlechte Immunabwehr

Antibiogramm:

Sensibel gg.

- Penicillin G
- Amoxicillin/Clavulansäure
- Ampicillin
- Cefiquinem
 Reserve!
- <u>Licomycin/Neomycin</u> bacstatisch!

Lokale Antibiose

Bakterizides AB!

Mastitis mit Strep. uberis

= Umweltkeim, Milchgänge gering krankmachend

Ausnahme: schlechte Immunabwehr

Antibiogramm:

Sensibel gg.

- Penicillin G
- Amoxicillin/Clavulansäure
- Ampicillin
- Cefiquinom
 Reserve!
- Licomycin/Neomycin bacstatisch!

Lokale Antibiose

Bakterizides AB!

Klinische Pharmakologie

Herausforderung:

Unter Berücksichtigung individueller Einflussfaktoren sowie rechtlicher Vorgaben

Erstellung einer geeigneten, sicheren und anwendbaren Pharmakotherapie

Vielen Dank für Ihre Aufmerksamkeit!

